Planet birth begins with a twist

Observations made with the European Southern Observatory’s Very Large Telescope (ESO’s VLT) have revealed the telltale signs of a star system being born. Credit: ESO/Boccaletti et al.
Observations made with the European Southern Observatory’s Very Large Telescope (ESO’s VLT) have revealed the telltale signs of a star system being born. Credit: ESO/Boccaletti et al.

.

May 20 — “Thousands of exoplanets have been identified so far, but little is known about how they form,” says Anthony Boccaletti who led the study from the Observatoire de Paris, PSL University, France. Astronomers know planets are born in dusty discs surrounding young stars, like AB Aurigae, as cold gas and dust clump together. The new observations with ESO’s VLT, published in Astronomy & Astrophysics, provide crucial clues to help scientists better understand this process.
“We need to observe very young systems to really capture the moment when planets form,” says Boccaletti. But until now astronomers had been unable to take sufficiently sharp and deep images of these young discs to find the ‘twist’ that marks the spot where a baby planet may be coming to existence.

The new images feature a stunning spiral of dust and gas around AB Aurigae, located 520 light-years away from Earth in the constellation of Auriga (The Charioteer). Spirals of this type signal the presence of baby planets, which ‘kick’ the gas, creating “disturbances in the disc in the form of a wave, somewhat like the wake of a boat on a lake,” explains Emmanuel Di Folco of the Astrophysics Laboratory of Bordeaux (LAB), France, who also participated in the study. As the planet rotates around the central star, this wave gets shaped into a spiral arm. The very bright yellow ‘twist’ region close to the center of the new AB Aurigae image, which lies at about the same distance from the star as Neptune from the Sun, is one of these disturbance sites where the team believe a planet is being made.

 

The images of the AB Aurigae system showing the disc around it. The image on the right is a zoomed-in version of the area indicated by a red square on the image on the left. It shows the inner region of the disc, including the very-bright-yellow ‘twist’ (circled in white) that scientists believe marks the spot where a planet is forming. This twist lies at about the same distance from the AB Aurigae star as Neptune from the Sun. The blue circle represents the size of the orbit of Neptune. The images were obtained with the SPHERE instrument on ESO’s Very Large Telescope in polarized light. Credit: ESO/Boccaletti et al.
The images of the AB Aurigae system showing the disc around it. The image on the right is a zoomed-in version of the area indicated by a red square on the image on the left. It shows the inner region of the disc, including the very-bright-yellow ‘twist’ (circled in white) that scientists believe marks the spot where a planet is forming. This twist lies at about the same distance from the AB Aurigae star as Neptune from the Sun. The blue circle represents the size of the orbit of Neptune. The images were obtained with the SPHERE instrument on ESO’s Very Large Telescope in polarized light. Credit: ESO/Boccaletti et al.

 

Observations of the AB Aurigae system made a few years ago with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner, provided the first hints of ongoing planet formation around the star. In the ALMA images, scientists spotted two spiral arms of gas close to the star, lying within the disc’s inner region. Then, in 2019 and early 2020, Boccaletti and a team of astronomers from France, Taiwan, the US and Belgium set out to capture a clearer picture by turning the SPHERE instrument on ESO’s VLT in Chile toward the star. The SPHERE images are the deepest images of the AB Aurigae system obtained to date.

With SPHERE’s powerful imaging system, astronomers could see the fainter light from small dust grains and emissions coming from the inner disc. They confirmed the presence of the spiral arms first detected by ALMA and also spotted another remarkable feature, a ‘twist’, that points to the presence of ongoing planet formation in the disc. “The twist is expected from some theoretical models of planet formation,” says co-author Anne Dutrey, also at LAB. “It corresponds to the connection of two spirals  — one winding inwards of the planet’s orbit, the other expanding outwards — which join at the planet location. They allow gas and dust from the disc to accrete onto the forming planet and make it grow.”

ESO is constructing the 39-meter Extremely Large Telescope, which will draw on the cutting-edge work of ALMA and SPHERE to study extrasolar worlds. As Boccaletti explains, this powerful telescope will allow astronomers to get even more detailed views of planets in the making. “We should be able to see directly and more precisely how the dynamics of the gas contributes to the formation of planets,” he concludes.

August 10 Open Night: Saturn and the Moon

Saturn and Moons, July 10, 2019. Simulation via Gas Giants.

 

Stephens Memorial Observatory of Hiram College will host a Public Night Saturday, August 10, from 9:00 to 11:00 PM. On the observing list are two Stephens favorites: Earth’s Moon, and the Ringed World – Saturn! Other objects of interest may also be viewed using the Observatory’s 1901 vintage telescope. Given good viewing conditions the telescope delivers outstanding detail of the Moon and impressive views of Saturn and distinctive rings.

Cloudy skies at the scheduled starting time cancel the event in which case, the observatory will not open. No reservations are required and there is no admission fee for observatory public nights.

The Observatory is located on Wakefield Road (Rt. 82) less than a quarter of a mile west of Route 700 in Hiram. There is no parking at the Observatory. Visitors may park on permissible side streets near the Post Office, a short distance east of the observatory.

Updates on programming are available via the Observatory’s Twitter feed: @StephensObs or its website: StephensObservatory.org.

An end to “Oppy”

In this navigation camera raw image, NASA's Opportunity Rover looks back over its own tracks on Aug. 4, 2010. Image Credit: NASA/JPL-Caltech
In this navigation camera raw image, NASA’s Opportunity Rover looks back over its own tracks in Martian soil on Aug. 4, 2010. Image Credit: NASA/JPL-Caltech

 

February 12, 2019 — One of the most successful and enduring feats of interplanetary exploration, NASA’s Opportunity rover mission is at an end after almost 15 years exploring the surface of Mars and helping lay the groundwork for NASA’s return to the Red Planet.

The Opportunity rover stopped communicating with Earth when a severe Mars-wide dust storm blanketed its location in June 2018. After more than a thousand commands to restore contact, engineers in the Space Flight Operations Facility at NASA’s Jet Propulsion Laboratory (JPL) made their last attempt to revive Opportunity Tuesday, to no avail. The solar-powered rover’s final communication was received June 10.

Artist's concept of the Spirit & Opportunity Mars Rovers. Image Credit: NASA
Artist’s concept of the Spirit & Opportunity Mars Rovers. Image Credit: NASA

“It is because of trailblazing missions such as Opportunity that there will come a day when our brave astronauts walk on the surface of Mars,” said NASA Administrator Jim Bridenstine. “And when that day arrives, some portion of that first footprint will be owned by the men and women of Opportunity, and a little rover that defied the odds and did so much in the name of exploration.”

Designed to last just 90 Martian days and travel 1,100 yards (1,000 meters), Opportunity vastly surpassed all expectations in its endurance, scientific value and longevity. In addition to exceeding its life expectancy by 60 times, the rover traveled more than 28 miles (45 kilometers) by the time it reached its most appropriate final resting spot on Mars – “Perseverance Valley.”

“For more than a decade, Opportunity has been an icon in the field of planetary exploration, teaching us about Mars’ ancient past as a wet, potentially habitable planet, and revealing uncharted Martian landscapes,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “Whatever loss we feel now must be tempered with the knowledge that the legacy of Opportunity continues – both on the surface of Mars with the Curiosity rover and InSight lander – and in the clean rooms of JPL, where the upcoming Mars 2020 rover is taking shape.”

Click here for more on NASA’s Mars rovers!

June 23 Public Night: A belated season opener

FINAL — 8:59 PM: Event canceled due to near-Overcast conditions and nearby rain showers. We will try again in July.

UPDATE – June 23, 4:00 PM: Sky conditions are very changeable but prospects look generally poor for tonight’s scheduled Open Night as clouds dominate and isolated showers roam the region. We will make a final go/no-go decision this evening and announce it here and via Twitter.

Stephens Memorial Observatory of Hiram College will be open for public observing Saturday, June 23, from 9:00 to 11:00 PM. Given good skies, visitors will see wonderful views of the Moon and giant planet Jupiter with moons of its own. Other objects of interest, such as star clusters, will also be sought, using the Observatory’s vintage telescope.

Jupiter and Moons - June 23, 2018, 10 PM - Simulated View
Jupiter and Moons – June 23, 2018, 10 PM – Simulated View

The June event represents a late start to our public outreach season caused by an operational problem with the observatory building constructed in 1939. The problem has been corrected and we hope to present a full season’s schedule of public events.

Cloudy skies at the scheduled starting time cancel the event and in that case, the observatory will not open. No reservations are required and there is no admission fee for observatory public nights.

The Observatory is located on Wakefield Road (Rt. 82) less than a quarter of a mile west of Route 700 in Hiram. There is no parking at the Observatory. Visitors may park on permissible side streets near the Post Office, a short distance east of the observatory.

August 12: Special FRIDAY Open Night!

Image: Saturn: August 12, 10:00 PM EDT - Simulated view via Gas Giants app
Saturn: August 12, 10:00 PM EDT – Simulated view via Gas Giants app

UPDATE: Due to mostly-cloudy to overcast skies and recurring scattered thunderstorms, this event has been CANCELED. — JG, 8/12/16, 8:00 PM.

Stephens Memorial Observatory of Hiram College will be open for public observing Friday, August 12, from 9:30 to midnight. Hoping to catch the end of the annual Perseid Meteor Shower, the observatory is hosting its monthly public event on this Friday rather than on Saturday night.

Visitors are invited to bring personal lawn chairs and sit out beneath the stars watching for meteors (mosquito repellent is strongly recommended) until midnight. Via telescope, views of beautiful Saturn, and other objects will also be offered. Saturn’s famous ring system is nicely tilted allowing for excellent viewing, given clear skies.

No reservations are required and there is no admission fee for observatory public nights. Cloudy skies at the starting time cancel the event and, in that case, the observatory will not open.

The Observatory is located on Wakefield Road (Rt. 82) less than a quarter of a mile west of Route 700 in Hiram. There is no parking at the Observatory. Visitors may park on permissible side streets near the Post Office, a short distance east of the observatory.

Open Night: Saturday, June 18

Image: Simulated view of Saturn.
Simulated view of Saturn and a few of its moons as they will appear June 18, 2016. Click for bigger view!

Stephens Memorial Observatory of Hiram College will be open for public observing Saturday, June 18, from 9:30 to 11:00 PM.

Beautiful ringed Saturn, planet Mars, Earth’s amazing Moon, and (if the Moon doesn’t interfere) the Ring Nebula will be the featured objects.

No reservations are required and there is no admission fee for observatory public nights. Cloudy skies at the starting time cancel the event and, in that case, the observatory will not open.
The Observatory is located on Wakefield Road (Rt. 82) less than a quarter of a mile west of Route 700 in Hiram. There is no parking at the Observatory or on nearby Peckham Avenue. Visitors may park on permissible side streets near the Post Office, a short distance east of the observatory.

Caltech researchers find evidence of a “real” ninth planet

by Kimm Fesenmaier, Caltech News Service

Caltech researchers have found evidence of a giant planet tracing a bizarre, highly elongated orbit in the outer solar system. The object, which the researchers have nicknamed Planet Nine, has a mass about 10 times that of Earth and orbits about 20 times farther from the sun on average than does Neptune (which orbits the sun at an average distance of 2.8 billion miles). In fact, it would take this new planet between 10,000 and 20,000 years to make just one full orbit around the sun.

The researchers, Konstantin Batygin and Mike Brown, describe their work in the current issue of the Astronomical Journal and show how Planet Nine helps explain a number of mysterious features of the field of icy objects and debris beyond Neptune known as the Kuiper Belt.

Image: Planet Nine's Orbit.
The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration.
Credit: Caltech/R. Hurt (IPAC); [Diagram created using WorldWide Telescope.]
Batygin and Brown discovered the planet’s existence through mathematical modeling and computer simulations but have not yet observed the object directly. “I would love to find it,” says Brown. “But I’d also be perfectly happy if someone else found it. That is why we’re publishing this paper. We hope that other people are going to get inspired and start searching.”

“This would be a real ninth planet,” says Brown, the Richard and Barbara Rosenberg Professor of Planetary Astronomy. “There have only been two true planets discovered since ancient times, and this would be a third. It’s a pretty substantial chunk of our solar system that’s still out there to be found, which is pretty exciting.” Brown’s previous discoveries helped “kill” former ninth planet Pluto, the tiny ice world recently visited by the New Horizons mission spacecraft.

Batygin and Brown continue to refine their simulations and learn more about the planet’s orbit and its influence on the distant solar system. Meanwhile, Brown and other colleagues have begun searching the skies for Planet Nine. Only the planet’s rough orbit is known, not the precise location of the planet on that elliptical path. If the planet happens to be close to its perihelion, Brown says, astronomers should be able to spot it in images captured by previous surveys. If it is in the most distant part of its orbit, the world’s largest telescopes—such as the twin 10-meter telescopes at the W. M. Keck Observatory and the Subaru Telescope, all on Mauna Kea in Hawaii—will be needed to see it. If, however, Planet Nine is now located anywhere in between, many telescopes have a shot at finding it.

Brown notes that the putative ninth planet—at 5,000 times the mass of Pluto—is sufficiently large that there should be no debate about whether it is a true planet. Unlike the class of smaller objects now known as dwarf planets, Planet Nine gravitationally dominates its neighborhood of the solar system. In fact, it dominates a region larger than any of the other known planets—a fact that Brown says makes it “the most planet-y of the planets in the whole solar system.”

“Although we were initially quite skeptical that this planet could exist, as we continued to investigate its orbit and what it would mean for the outer solar system, we become increasingly convinced that it is out there,” says Batygin, an assistant professor of planetary science. “For the first time in over 150 years, there is solid evidence that the solar system’s planetary census is incomplete.”

The road to the theoretical discovery was not straightforward. In 2014, a former postdoc of Brown’s, Chad Trujillo, and his colleague Scott Sheppard published a paper noting that 13 of the most distant objects in the Kuiper Belt are similar with respect to an obscure orbital feature. To explain that similarity, they suggested the possible presence of a small planet. Brown thought the planet solution was unlikely, but his interest was piqued.

He took the problem down the hall to Batygin, and the two started what became a year-and-a-half-long collaboration to investigate the distant objects. As an observer and a theorist, respectively, the researchers approached the work from very different perspectives—Brown as someone who looks at the sky and tries to anchor everything in the context of what can be seen, and Batygin as someone who puts himself within the context of dynamics, considering how things might work from a physics standpoint. Those differences allowed the researchers to challenge each other’s ideas and to consider new possibilities. “I would bring in some of these observational aspects; he would come back with arguments from theory, and we would push each other. I don’t think the discovery would have happened without that back and forth,” says Brown. ” It was perhaps the most fun year of working on a problem in the solar system that I’ve ever had.”

Quickly, Batygin and Brown realized that the six most distant objects from Trujillo and Shepherd’s original collection all follow elliptical orbits that point in the same direction in physical space. That is particularly surprising because the outermost points of their orbits move around the solar system, and they travel at different rates.

“It’s almost like having six hands on a clock all moving at different rates, and when you happen to look up, they’re all in exactly the same place,” says Brown. The odds of having that happen are something like one in 100, he says. But on top of that, the orbits of the six objects are also all tilted in the same way—pointing about 30 degrees downward in the same direction relative to the plane of the eight known planets. The probability of that happening is about 0.007 percent. “Basically it shouldn’t happen randomly,” Brown says. “So we thought something else must be shaping these orbits.”

The first possibility they investigated was that perhaps there are enough distant Kuiper Belt objects—some of which have not yet been discovered—to exert the gravity needed to keep that subpopulation clustered together. The researchers quickly ruled this out when it turned out that such a scenario would require the Kuiper Belt to have about 100 times the mass it has today.
That left them with the idea of a planet. Their first instinct was to run simulations involving a planet in a distant orbit that encircled the orbits of the six Kuiper Belt objects, acting like a giant lasso to wrangle them into their alignment. Batygin says that almost works but does not provide the observed eccentricities precisely. “Close, but no cigar,” he says.

Then, effectively by accident, Batygin and Brown noticed that if they ran their simulations with a massive planet in an anti-aligned orbit—an orbit in which the planet’s closest approach to the sun, or perihelion, is 180 degrees across from the perihelion of all the other objects and known planets—the distant Kuiper Belt objects in the simulation assumed the alignment that is actually observed.
“Your natural response is ‘This orbital geometry can’t be right. This can’t be stable over the long term because, after all, this would cause the planet and these objects to meet and eventually collide,'” says Batygin. But through a mechanism known as mean-motion resonance, the anti-aligned orbit of the ninth planet actually prevents the Kuiper Belt objects from colliding with it and keeps them aligned. As orbiting objects approach each other they exchange energy. So, for example, for every four orbits Planet Nine makes, a distant Kuiper Belt object might complete nine orbits. They never collide. Instead, like a parent maintaining the arc of a child on a swing with periodic pushes, Planet Nine nudges the orbits of distant Kuiper Belt objects such that their configuration with relation to the planet is preserved.

“Still, I was very skeptical,” says Batygin. “I had never seen anything like this in celestial mechanics.” But little by little, as the researchers investigated additional features and consequences of the model, they became persuaded. “A good theory should not only explain things that you set out to explain. It should hopefully explain things that you didn’t set out to explain and make predictions that are testable,” says Batygin.

And indeed Planet Nine’s existence helps explain more than just the alignment of the distant Kuiper Belt objects. It also provides an explanation for the mysterious orbits that two of them trace. The first of those objects, dubbed Sedna, was discovered by Brown in 2003. Unlike standard-variety Kuiper Belt objects, which get gravitationally “kicked out” by Neptune and then return back to it, Sedna never gets very close to Neptune. A second object like Sedna, known as 2012 VP113, was announced by Trujillo and Shepherd in 2014. Batygin and Brown found that the presence of Planet Nine in its proposed orbit naturally produces Sedna-like objects by taking a standard Kuiper Belt object and slowly pulling it away into an orbit less connected to Neptune.

But the real kicker for the researchers was the fact that their simulations also predicted that there would be objects in the Kuiper Belt on orbits inclined perpendicularly to the plane of the planets. Batygin kept finding evidence for these in his simulations and took them to Brown. “Suddenly I realized there are objects like that,” recalls Brown. In the last three years, observers have identified four objects tracing orbits roughly along one perpendicular line from Neptune and one object along another. “We plotted up the positions of those objects and their orbits, and they matched the simulations exactly,” says Brown. “When we found that, my jaw sort of hit the floor.”

This item is an edited version of a more detailed story. Click here to read Caltech’s full account.

More planets line up in our morning sky

Illustration: January 2016: Five Planets Visible in the Pre-Dawn Sky
January 2016: Five Planets Visible in the Pre-Dawn Sky

 

Over recent weeks we have watched as several planets have appeared close together in our morning sky — when clear, that is — and even seen them shift their positions as the days passed! Beginning this frigid week and continuing into mid-February, five of Earth’s Solar System siblings will be visible, spanning the southern sky. This is the first time since 2005 that this planetary lineup has occurred. If we get a break in morning cloud cover go out, just before dawn’s early light, and look for the planetary parade. Little Mercury will be the hardest to spot being both dim and close to the horizon. Venus and Jupiter will be easy as they are the brightest of the bunch. Golden Saturn and finally reddish Mars should also be easy to find though Mars isn’t a standout. The gathering will occur again late this summer and in the evening sky. The planets aren’t really very much closer together in space during this time. The chart below illustrates the current relative positions of the planets; it’s our point of view from Earth that makes creates the scene: something like watching racers on a race track, appearing closer and farther apart as they run laps in their concentric lanes.

Illustration: January 2016: Planetary Positions - Area Between Lines of Sight Illustrates Area of Space We See
January 2016: Planetary Positions – Area Between Lines of Sight Illustrates Area of Space We See

Jupiter and Venus converge June 30

Image: Jupiter and Venus Converge June 30 - Chart Courtesy Sky & Telescope
Jupiter and Venus Converge June 30 – Chart Courtesy Sky & Telescope

Let’s hope for clear skies the evening of June 30 when the ongoing conjunction of Jupiter and Venus gets really cozy! Tuesday evening will see the two planets sharing a space only 1/3-degree apart in our sky; they will look like a brilliant double star. After Tuesday’s encounter, the planets will drift slowly apart night-by-night but will remain a beautiful sight in twilight. Chart courtesy Sky & Telescope – SkyAndTelescope.com