New planet detected around star closest to the Sun

This artist’s impression shows a close-up view of Proxima d, a planet candidate recently found orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The planet is believed to be rocky and to have a mass about a quarter that of Earth. Two other planets known to orbit Proxima Centauri are visible in the image too: Proxima b, a planet with about the same mass as Earth that orbits the star every 11 days and is within the habitable zone, and candidate Proxima c, which is on a longer five-year orbit around the star.

A team of astronomers using the European Southern Observatory’s Very Large Telescope (ESO’s VLT) in Chile have found evidence of another planet orbiting Proxima Centauri, the closest star to our Solar System. This candidate planet is the third detected in the system and the lightest yet discovered orbiting this star. At just a quarter of Earth’s mass, the planet is also one of the lightest exoplanets ever found.

“The discovery shows that our closest stellar neighbor seems to be packed with interesting new worlds, within reach of further study and future exploration,” explains João Faria, a researcher at the Instituto de Astrofísica e Ciências do Espaço, Portugal and lead author of the study published today in Astronomy & Astrophysics. Proxima Centauri is the closest star to the Sun, lying just over four light-years away.

The newly discovered planet, named Proxima d, orbits Proxima Centauri at a distance of about four million kilometers, less than a tenth of Mercury’s distance from the Sun. It orbits between the star and the habitable zone — the area around a star where liquid water can exist at the surface of a planet — and takes just five days to complete one orbit around Proxima Centauri.

The star is already known to host two other planets: Proxima b, a planet with a mass comparable to that of Earth that orbits the star every 11 days and is within the habitable zone, and candidate Proxima c, which is on a longer five-year orbit around the star.

This chart shows the large southern constellation of Centaurus (The Centaur) and shows most of the stars visible with the naked eye on a clear dark night. The location of the closest star to the Solar System, Proxima Centauri, is marked with a red circle. Proxima is too faint to see with the unaided eye but can be found using a small telescope. This area of the sky is not visible from North America.

Proxima b was discovered a few years ago using the HARPS instrument on ESO’s 3.6-meter telescope. The discovery was confirmed in 2020 when scientists observed the Proxima system with a new instrument on ESO’s VLT that had greater precision, the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO). It was during these more recent VLT observations that astronomers spotted the first hints of a signal corresponding to an object with a five-day orbit. As the signal was so weak, the team had to conduct follow-up observations with ESPRESSO to confirm that it was due to a planet, and not simply a result of changes in the star itself.

“After obtaining new observations, we were able to confirm this signal as a new planet candidate,” Faria says. “I was excited by the challenge of detecting such a small signal and, by doing so, discovering an exoplanet so close to Earth.”

At just a quarter of the mass of Earth, Proxima d is the lightest exoplanet ever measured using the radial velocity technique, surpassing a planet recently discovered in the L 98-59 planetary system. The technique works by picking up tiny wobbles in the motion of a star created by an orbiting planet’s gravitational pull. The effect of Proxima d’s gravity is so small that it only causes Proxima Centauri to move back and forth at around 40 centimeters per second (1.44 kilometers per hour).

“This achievement is extremely important,” says Pedro Figueira, ESPRESSO instrument scientist at ESO in Chile. “It shows that the radial velocity technique has the potential to unveil a population of light planets, like our own, that are expected to be the most abundant in our galaxy and that can potentially host life as we know it.”

“This result clearly shows what ESPRESSO is capable of and makes me wonder about what it will be able to find in the future,” Faria adds.

ESPRESSO’s search for other worlds will be complemented by ESO’s Extremely Large Telescope (ELT), currently under construction in the Atacama Desert, which will be crucial to discovering and studying many more planets around nearby stars.

Centaurus A captured by the Dark Energy Camera

The galaxy Centaurus A, which lies over 12 million light-years away in the direction of the southern-hemisphere constellation Centaurus (The Centaur), is the leading light of this striking image. This image provides a spectacular view of the luminous glow of stars and dark tendrils of dust that hide the bright center of the galaxy. This dust is the result of a past galactic collision, in which a giant elliptical galaxy merged with a smaller spiral galaxy. As well as large amounts of gas and dust, Centaurus A’s dust lane contains widespread star formation, as indicated by the red clouds of hydrogen and by the large numbers of faint blue stars visible at each end of the dust lane.

Credit: CTIO/NOIRLab/DOE/NSF/AURA

As the world turns

As stars appear to circle around the north celestial pole, a new laser at the Gemini North telescope on Hawaii’s Maunakea undergoes rigorous testing, as seen in this image from early October 2019. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA/J. Chu/J. Pollard 

The International Gemini Observatory, a program of the National Science Foundation’s National Optical-Infrared Astronomy Research Laboratory (NOIRLab), is seen testing a new laser which is a critical component in the telescope’s adaptive optics system. Adaptive optics utilize artificial guide stars, produced by a laser, as a reference when compensating for distortions caused by turbulence in the Earth’s atmosphere. The result is ultra-sharp images that rival the view from space. Laser commissioning activities required pointing at specific parts of the sky designed to both test and calibrate the state-of-the-art laser. This image is created from a stack of images that reveal the Earth’s rotation and the colors inherent in the images. The laser is pointing in the direction of Polaris, or the North Star (Hokupa‘a in Hawaiian). The green glow near the horizon is due to airglow from oxygen high in the Earth’s atmosphere.

Research on Milky Way’s supermassive black hole wins 2020 Nobel Prize in Physics

The central parts of our Galaxy, the Milky Way, as observed in the near-infrared with the NACO instrument on ESO’s Very Large Telescope. By following the motions of the most central stars over more than 16 years, astronomers were able to determine the mass of the supermassive black hole that lurks there. Credit: ESO/S. Gillessen et al.

Reinhard Genzel and Andrea Ghez have jointly been awarded the 2020 Nobel Prize in Physics for their work on the supermassive black hole, Sagittarius A*, at the center of our galaxy. Genzel, Director at the Max Planck Institute for Extraterrestrial Physics in Germany, and his team have conducted observations of Sagittarius A* for nearly 30 years using a fleet of instruments on European Southern Observatory (ESO) telescopes.

Genzel shares half of the prize with Ghez, a professor at the University of California, Los Angeles in the US, “for the discovery of a supermassive compact object at the center of our galaxy”, with the other half awarded to Roger Penrose, professor at the University of Oxford in the UK, “for the discovery that black hole formation is a robust prediction of the general theory of relativity.” 

“Congratulations to all three Nobel laureates! We are delighted that the research on the supermassive black hole at the center of our galaxy has been recognized with the 2020 Nobel Prize in Physics. We are proud that the telescopes ESO builds and operates at its observatories in Chile played a key role in this discovery,” says ESO’s Director General Xavier Barcons. “The work done by Reinhard Genzel with ESO telescopes and by Andrea Ghez with the Keck telescopes in Hawaii has enabled unprecedented insight into Sagittarius A*, which confirmed predictions of Einstein’s general relativity.”

ESO has worked in very close collaboration with Genzel and his group for around 30 years. Since the early 1990s, Genzel and his team, in cooperation with ESO, have developed instruments designed to track the orbits of stars in the Sagittarius A* region at the center of the Milky Way. 

They started their campaign in 1992 using the SHARP instrument on ESO’s New Technology Telescope (NTT) at the La Silla Observatory in Chile. The team later used extremely sensitive instruments on ESO’s Very Large Telescope (VLT) and the Very Large Telescope Interferometer at the Paranal Observatory, namely NACO, SINFONI and later GRAVITY, to continue their study of Sagittarius A. 

In 2008, after 16 years of tracking stars orbiting Sagittarius A*, the team delivered the best empirical evidence that a supermassive black hole exists at the center of our galaxy. Both Genzel’s and Ghez’s groups accurately traced the orbit of one star in particular, S2, which reached the closest distance to Sagittarius A* in May 2018. ESO undertook a number of developments and infrastructure upgrades in Paranal to enable accurate measurements of the position and velocity of S2.

The team led by Genzel found the light emitted by the star close to the supermassive black hole was stretched to longer wavelengths, an effect known as gravitational redshift, confirming for the first time Einstein’s general relativity near a supermassive black hole. Earlier this year, the team announced they had seen S2 ‘dance’ around the supermassive black hole, showing its orbit is shaped like a rosette, an effect called Schwarzschild precession that was predicted by Einstein.

Genzel and his team are also involved in the development of instruments that will be installed on ESO’s Extremely Large Telescope, currently under construction in Chile’s Atacama Desert, which will enable them to probe the environment even closer to the supermassive black hole.

A stellar butterfly

This highly detailed image of the fantastic NGC 2899 planetary nebula was captured using the FORS instrument on ESO’s Very Large Telescope in northern Chile. This object has never before been imaged in such striking detail, with even the faint outer edges of the planetary nebula glowing over the background stars. Credit: ESO

Resembling a butterfly with its symmetrical structure, beautiful colors, and intricate patterns, this striking bubble of gas — known as NGC 2899 — appears to float and flutter across the sky in this new picture from the European Southern Observatory’s Very Large Telescope (VLT). This object has never before been imaged in such striking detail, with even the faint outer edges of the planetary nebula glowing over the background stars.

NGC 2899’s vast swathes of gas extend up to a maximum of two light-years from its center, glowing brightly in front of the stars of the Milky Way as the gas reaches temperatures upwards of ten thousand degrees. The high temperatures are due to the large amount of radiation from the nebula’s parent star, which causes the hydrogen gas in the nebula to glow in a reddish halo around the oxygen gas, in blue.

This object, located between 3000 and 6500 light-years away in the Southern constellation of Vela (The Sails), has two central stars, which are believed to give it its nearly symmetric appearance. After one star reached the end of its life and cast off its outer layers, the other star now interferes with the flow of gas, forming the two-lobed shape seen here. Only about 10–20% of planetary nebulae [1] display this type of bipolar shape.

Astronomers were able to capture this highly detailed image of NGC 2899 using the FORS instrument installed on UT1 (Antu), one of the four 8.2-meter telescopes that make up ESO’s VLT in Chile. Standing for FOcal Reducer and low dispersion Spectrograph, this high-resolution instrument was one of the first to be installed on ESO’s VLT and is behind numerous beautiful images and discoveries from ESO. FORS has contributed to observations of light from a gravitational wave source, has researched the first known interstellar asteroid, and has been used to study in depth the physics behind the formation of complex planetary nebulae.

This image was created under the ESO Cosmic Gems program, an outreach initiative to produce images of interesting, intriguing or visually attractive objects using ESO telescopes, for the purposes of education and public outreach. The program makes use of telescope time that cannot be used for science observations. All data collected may also be suitable for scientific purposes, and are made available to astronomers through ESO’s science archive.

Excitement surrounds comet C/2020 F3 (NEOWISE)

Purity and Pollution. Comet C/2020 F3 NEOWISE floats serenely among stars above clouds glowing brightly from light pollution. Photo by James Guilford.

Comet C/2020 F3 (NEOWISE) was, for us in North America, a predawn object requiring exceptional dedication for observing.  In the second week of July, the comet had moved enough in its orbit to become visible in the evening sky — from late twilight to about 11 p.m. Unfortunately, cloudy nights have been the rule lately so opportunities have been few.

On Wednesday night, July 15, the sky forecast was a bit shaky but it turned out the sky cleared enough to allow C/2020 F3 to be seen. I raced off to an observing site some 25 minutes away from home, popular with sunset watchers and, occasionally, comet spotters. Arriving at the site I found the place mobbed, the parking lot nearly full, by scores of would-be comet viewers. Unfortunately, the comet was pretty much at the low end of naked-eye visibility. Light pollution reduced contrast between comet and background sky to make the object nearly invisible — binoculars were needed. It’s likely most of those in attendance never saw the comet.

Entitled “Purity and Pollution,” this picture (a single exposure of 8 seconds) shows a pristine wonder of the night sky floating serenely amongst the stars, clouds glowing brightly below illuminated by artificial light pollution. If we were only more careful with our artificial light, we’d save plentiful energy (and money) and gain back our starry skies as a bonus!

C/2020 F3 (NEOWISE) will be gracing our night skies for the next week or so and I hope to have more than one opportunity to record the event before it is gone. The next apparition of this comet is expected in about 6,800 years.

A visitor from outer space

Seen at 5:00 in the morning, July 9, 2020, C/2020 F3 rises over calm Lake Erie waters and predawn colors. Photo by James Guilford.

The talk amongst stargazers this summer has been the apparition of C/2020 F3 NEOWISE in Northern Hemisphere skies. Previously one comet had caused excitement over its potential showing but it broke up as it approached the Sun. Another fizzled and faded from view. But C/2020 F3 survived its July 3 close approach to the sun (perihelion) and emerged bigger and brighter than expected.

The comet’s brightness is due to its large nucleus — the head of the comet — which is the source of frozen gas and dust that produces the visible tail or coma. “From its infrared signature, we can tell that [the nucleus] is about 5 kilometers across,” said Joseph Masiero, NEOWISE deputy principal investigator at NASA’s Jet Propulsion Laboratory.

C/2020 F3 was discovered in infrared images captured by NASA’s NEOWISE spacecraft in March 2020. The object was assigned the unromantic designation of C/2020 F3 with the spacecraft’s name as discoverer.

Comet C/2020 F3 with normal exposure (top), then brightened in processing to bring out fuller extent of its dust trail (lower image). Photo by James Guilford.

Falling in from the outer solar system, then diving perilously close to the Sun gave our comet a boost in speed and increased its orbital period from about 4,500 years to about 6,800 years — a long time to wait for its return.

Until recently C/2020 F3 put in its appearances only in the predawn hours, rising a little after 3:30 AM and fading into the brightening sky a bit past 5:00 AM. It was also rising to only about 10º above the horizon placing it, much of the time, in the realm of morning clouds, mists, haze, and general murk.

But it’s not over.

While at the time of this writing C/2020 F3 continues to be viewable in the wee hours before dawn in the northeastern sky, sinking lower with each morning, it is now also showing in the post-sunset twilight. It’s still only becoming visible around 14º to 10º above the north-northwestern horizon as it sinks toward the horizon following the Sun. The comet sets around 12:30 AM.

July’s evening sky offers more convenient viewing hours for C/2020 F3. Credit: SkySafari

Evenings, for the next couple of weeks and possibly into August, go comet hunting! Depending upon whether the sky is clear of obstructions, clouds, and haze, skywatchers may be able to see the comet with unaided eye. Good binoculars will help in finding it and will give seekers a better view. The comet will be very low to the horizon so an elevated location will aid in viewing. Use binoculars to look west and then past northwest in the deepening twilight, scanning slowly and just above the horizon. The comet will appear as a vertical streak with a bright dot at the lower end, as in the picture at the top of this page. It may not be spectacular but how many comets does one see in their lifetime?

Our outbound visitor from outer space makes its closest pass by Earth on July 23 when it will be 103.7 million kilometers — about 64 million miles — away returning in roughly 7,000 years.

Subtle lunar eclipse July 4 – 5

Penumbral Lunar Eclipse. NASA Solar and Earth images, illustration by James Guilford.
A penumbral lunar eclipse occurs when the Moon passes through the thin outer shadow — penumbra — Earth casts out into space.

We’re fortunate that the night of July 4 is expected to be clear, and not just for the traditional booms and flashes of celebratory fireworks. Our Moon is getting in on the act, albeit with a much more subtle display in the form of a penumbral eclipse. The eclipse will take place from 11:07 PM to 1:52 AM EDT with maximum eclipse at 12:31 AM July 5.

We say subtle because, unlike a total lunar eclipse, Earth’s Moon will not change to reddish/coppery colors. The Moon will instead become oddly shadowed for a Full Moon, as it enters the outer fringes of Earth’s shadow in space — the penumbra. Only the “top” portion of Luna will pass through the penumbra making this eclipse especially slight. Still, it’s worth a look and it won’t be at a particularly late hour. A deeper penumbral lunar eclipse will take place the night of November 30, 2020.

Illustration of Earth's Umbra and Penumbra with Moon Positioned for Penumbral Eclipse.
Earth’s shadow streams into space away from the Sun. The shadow has a partially-shaded outer portion, and a deep inner cone. Moon is eclipsed when it enters Earth’s shadow. Moon is eclipsed when it passes through Earth’s shadow. Credit: SkySafari / J. Guilford

While it’s possible to view this eclipse with the unaided eye, binoculars will provide an enhanced view as would a small telescope.

Penumbral Shadow on Earth’s Moon at Maximum Eclipse. July 5, 2020 at 12:31 AM EDT. Simulation via SkySafari.

And just in case there’s any confusion, lunar eclipses are perfectly safe to view and photograph — it’s moonlight — so nothing to worry about there.

If you shoot any photos or have impressions to share with us, you can do so via our Twitter — @StephensObs

Penumbral Lunar Eclipse of July 4 – 5, 2020. Credit: NASA

NASA Eclipse Page available here: Penumbral Lunar Eclipse of July 4 – 5, 2020.

Planet birth begins with a twist

Observations made with the European Southern Observatory’s Very Large Telescope (ESO’s VLT) have revealed the telltale signs of a star system being born. Credit: ESO/Boccaletti et al.
Observations made with the European Southern Observatory’s Very Large Telescope (ESO’s VLT) have revealed the telltale signs of a star system being born. Credit: ESO/Boccaletti et al.

.

May 20 — “Thousands of exoplanets have been identified so far, but little is known about how they form,” says Anthony Boccaletti who led the study from the Observatoire de Paris, PSL University, France. Astronomers know planets are born in dusty discs surrounding young stars, like AB Aurigae, as cold gas and dust clump together. The new observations with ESO’s VLT, published in Astronomy & Astrophysics, provide crucial clues to help scientists better understand this process.
“We need to observe very young systems to really capture the moment when planets form,” says Boccaletti. But until now astronomers had been unable to take sufficiently sharp and deep images of these young discs to find the ‘twist’ that marks the spot where a baby planet may be coming to existence.

The new images feature a stunning spiral of dust and gas around AB Aurigae, located 520 light-years away from Earth in the constellation of Auriga (The Charioteer). Spirals of this type signal the presence of baby planets, which ‘kick’ the gas, creating “disturbances in the disc in the form of a wave, somewhat like the wake of a boat on a lake,” explains Emmanuel Di Folco of the Astrophysics Laboratory of Bordeaux (LAB), France, who also participated in the study. As the planet rotates around the central star, this wave gets shaped into a spiral arm. The very bright yellow ‘twist’ region close to the center of the new AB Aurigae image, which lies at about the same distance from the star as Neptune from the Sun, is one of these disturbance sites where the team believe a planet is being made.

 

The images of the AB Aurigae system showing the disc around it. The image on the right is a zoomed-in version of the area indicated by a red square on the image on the left. It shows the inner region of the disc, including the very-bright-yellow ‘twist’ (circled in white) that scientists believe marks the spot where a planet is forming. This twist lies at about the same distance from the AB Aurigae star as Neptune from the Sun. The blue circle represents the size of the orbit of Neptune. The images were obtained with the SPHERE instrument on ESO’s Very Large Telescope in polarized light. Credit: ESO/Boccaletti et al.
The images of the AB Aurigae system showing the disc around it. The image on the right is a zoomed-in version of the area indicated by a red square on the image on the left. It shows the inner region of the disc, including the very-bright-yellow ‘twist’ (circled in white) that scientists believe marks the spot where a planet is forming. This twist lies at about the same distance from the AB Aurigae star as Neptune from the Sun. The blue circle represents the size of the orbit of Neptune. The images were obtained with the SPHERE instrument on ESO’s Very Large Telescope in polarized light. Credit: ESO/Boccaletti et al.

 

Observations of the AB Aurigae system made a few years ago with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner, provided the first hints of ongoing planet formation around the star. In the ALMA images, scientists spotted two spiral arms of gas close to the star, lying within the disc’s inner region. Then, in 2019 and early 2020, Boccaletti and a team of astronomers from France, Taiwan, the US and Belgium set out to capture a clearer picture by turning the SPHERE instrument on ESO’s VLT in Chile toward the star. The SPHERE images are the deepest images of the AB Aurigae system obtained to date.

With SPHERE’s powerful imaging system, astronomers could see the fainter light from small dust grains and emissions coming from the inner disc. They confirmed the presence of the spiral arms first detected by ALMA and also spotted another remarkable feature, a ‘twist’, that points to the presence of ongoing planet formation in the disc. “The twist is expected from some theoretical models of planet formation,” says co-author Anne Dutrey, also at LAB. “It corresponds to the connection of two spirals  — one winding inwards of the planet’s orbit, the other expanding outwards — which join at the planet location. They allow gas and dust from the disc to accrete onto the forming planet and make it grow.”

ESO is constructing the 39-meter Extremely Large Telescope, which will draw on the cutting-edge work of ALMA and SPHERE to study extrasolar worlds. As Boccaletti explains, this powerful telescope will allow astronomers to get even more detailed views of planets in the making. “We should be able to see directly and more precisely how the dynamics of the gas contributes to the formation of planets,” he concludes.

Recalling an outburst: Comet 17P/Holmes

Photo: Comet 17P/Holmes by James Guilford
Comet Redux. Reprocessing old images shot through the Stephens Observatory telescope shows Comet 17P/Holmes as it appeared October 28, 2007. The two dots are bright stars shining through the comet’s coma. Photo by James Guilford.

Back in 2007 astronomers were excited by a comet known as 17P/Holmes. What was so exciting was that the seemingly ordinary visitor from distant parts of the Solar System suddenly put on a great show. In October, the usually dim 17P/Holmes changed from an unremarkable telescopic object to become visible to the unaided eye, appearing as a yellow “star” in constellation Perseus. It was briefly the largest object in the Solar System. The outburst was believed to be similar to one that took place in 1892 making it visible to amateur astronomer Edwin Holmes, credited with its discovery on November 6 of that year. The reason for the sudden brightening or outbursts remains unknown.

I used my little Canon Rebel XT digital camera attached to the vintage Cooley Telescope at Stephens and attempted to capture images of the comet. The effort and the camera were pretty primitive compared with what we can do now but I got some images and they were the best I could manage at the time. Comet 17P/Holmes faded from visibility over the next several weeks. The somewhat odd appearance of the comet — no classic head and tail — is the result of our perspective: looking straight down its tail instead of from the side.

Recently I viewed a television show about comets and the strange behavior of 17P/Holmes was discussed. That program reminded me of the 2007 apparition and to look at my old images. There wasn’t much image data to work with but I reprocessed what I have and produced a new image a bit better than my first try; that image, shot through our old telescope, appears above.

The “P” in the comet’s designation stands for periodic, meaning after a period of time 17P will return to loop, once again, around Sun. In March 2014 (a seven-year period) the loop was made without an outburst. The next close approach to our Sun, perihelion, will take place on February 19, 2021. Will we be treated to another show?

— James Guilford