No Open Nights until further notice

Sadly, there will be no Open Nights conducted at Stephens Memorial Observatory until further notice. One of the most effective means of preventing spread of the coronavirus disease 2019 (COVID-19) is to maintain at least six feet of distance between each other. Inviting the public to share the crowded space beneath the observatory’s ~16-foot dome would not be wise in view of the risk. Furthermore Hiram College, in compliance with CDC recommendations, does not permit gatherings of 10 or more people on campus properties. To assist in protecting the health of our attendees (and ourselves) we do not expect to conduct any Open Night sessions the spring or summer of 2021. This notice will be updated as changes warrant. Until we meet again, please watch this website for other news and follow us on Twitter. Thank you for your interest!

First Published June 8, 2020
Update: April 3, 2021

Ingenuity Mars helicopter to take flight soon

NASA’s Ingenuity Mars helicopter is seen in a close-up taken by Mastcam-Z, a pair of zoomable cameras aboard the Perseverance rover. This image was taken on April 5, 2021, the 45th Martian day, or sol, of the mission.
Credits: NASA/JPL-Caltech/ASU

UPDATE: Based on data from the Ingenuity Mars helicopter that arrived late Friday night, NASA has chosen to reschedule the Ingenuity Mars Helicopter’s first experimental flight to no earlier than April 14. CLICK HERE for the full story.

A livestream confirming Ingenuity’s first flight is targeted to begin around 3:30 a.m. EDT Monday, April 12, on NASA Television, the NASA app, and the agency’s website, and will livestream on multiple agency social media platforms, including the JPL YouTube and Facebook channels. When it happens it will be the first flight of an aircraft operated on another planet.

New: A view of the M87 supermassive black hole in polarized light

The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of a black hole released in 2019, has today a new view of the massive object at the centre of the Messier 87 (M87) galaxy: how it looks in polarised light. This is the first time astronomers have been able to measure polarisation, a signature of magnetic fields, this close to the edge of a black hole.  This image shows the polarised view of the black hole in M87. The lines mark the orientation of polarisation, which is related to the magnetic field around the shadow of the black hole.
This image shows the polarized view of the black hole in M87. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole. Credit: EHT Collaboration

March 24 — The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of a black hole, has today revealed a new view of the massive object at the center of the Messier 87 (M87) galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of a black hole. The observations are key to explaining how the M87 galaxy, located 55 million light-years away, is able to launch energetic jets from its core.

We are now seeing the next crucial piece of evidence to understand how magnetic fields behave around black holes, and how activity in this very compact region of space can drive powerful jets that extend far beyond the galaxy,” says Monika Mościbrodzka, Coordinator of the EHT Polarimetry Working Group and Assistant Professor at Radboud University in the Netherlands.

On 10 April 2019, scientists released the first ever image of a black hole, revealing a bright ring-like structure with a dark central region — the black hole’s shadow. Since then, the EHT collaboration has delved deeper into the data on the supermassive object at the heart of the M87 galaxy collected in 2017. They have discovered that a significant fraction of the light around the M87 black hole is polarized.

This work is a major milestone: the polarization of light carries information that allows us to better understand the physics behind the image we saw in April 2019, which was not possible before,” explains Iván Martí-Vidal, also Coordinator of the EHT Polarimetry Working Group and GenT Distinguished Researcher at the University of Valencia, Spain. He adds that “unveiling this new polarized-light image required years of work due to the complex techniques involved in obtaining and analyzing the data.

Light becomes polarized when it goes through certain filters, like the lenses of polarized sunglasses, or when it is emitted in hot regions of space where magnetic fields are present. In the same way that polarized sunglasses help us see better by reducing reflections and glare from bright surfaces, astronomers can sharpen their view of the region around the black hole by looking at how the light originating from it is polarized. Specifically, polarization allows astronomers to map the magnetic field lines present at the inner edge of the black hole. 

The newly published polarized images are key to understanding how the magnetic field allows the black hole to ‘eat’ matter and launch powerful jets,” says EHT collaboration member Andrew Chael, a NASA Hubble Fellow at the Princeton Center for Theoretical Science and the Princeton Gravity Initiative in the US.

The bright jets of energy and matter that emerge from M87’s core and extend at least 5000 light-years from its center are one of the galaxy’s most mysterious and energetic features. Most matter lying close to the edge of a black hole falls in. However, some of the surrounding particles escape moments before capture and are blown far out into space in the form of jets. 

This chart shows the position of giant galaxy Messier 87 in the constellation of Virgo (The Virgin). The map shows most of the stars visible to the unaided eye under good conditions.

Astronomers have relied on different models of how matter behaves near the black hole to better understand this process. But they still don’t know exactly how jets larger than the galaxy are launched from its central region, which is comparable in size to the Solar System, nor how exactly matter falls into the black hole. With the new EHT image of the black hole and its shadow in polarized light, astronomers managed for the first time to look into the region just outside the black hole where this interplay between matter flowing in and being ejected out is happening. 

The observations provide new information about the structure of the magnetic fields just outside the black hole. The team found that only theoretical models featuring strongly magnetized gas can explain what they are seeing at the event horizon. 

The observations suggest that the magnetic fields at the black hole’s edge are strong enough to push back on the hot gas and help it resist gravity’s pull. Only the gas that slips through the field can spiral inwards to the event horizon,” explains Jason Dexter, Assistant Professor at the University of Colorado Boulder, US, and Coordinator of the EHT Theory Working Group. 

To observe the heart of the M87 galaxy, the collaboration linked eight telescopes around the world — including the northern Chile-based Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Pathfinder EXperiment (APEX), in which the European Southern Observatory (ESO) is a partner — to create a virtual Earth-sized telescope, the EHT. The impressive resolution obtained with the EHT is equivalent to that needed to measure the length of a credit card on the surface of the Moon.

With ALMA and APEX, which through their southern location enhance the image quality by adding geographical spread to the EHT network, European scientists were able to play a central role in the research,” says Ciska Kemper, European ALMA Program Scientist at ESO. “With its 66 antennas, ALMA dominates the overall signal collection in polarized light, while APEX has been essential for the calibration of the image.”

“ALMA data were also crucial to calibrate, image and interpret the EHT observations, providing tight constraints on the theoretical models that explain how matter behaves near the black hole event horizon,” adds Ciriaco Goddi, a scientist at Radboud University and Leiden Observatory, the Netherlands, who led an accompanying study that relied only on ALMA observations.

The EHT setup allowed the team to directly observe the black hole shadow and the ring of light around it, with the new polarized-light image clearly showing that the ring is magnetized. The results are published today in two separate papers in The Astrophysical Journal Letters by the EHT collaboration. The research involved over 300 researchers from multiple organizations and universities worldwide. 

The EHT is making rapid advancements, with technological upgrades being done to the network and new observatories being added. We expect future EHT observations to reveal more accurately the magnetic field structure around the black hole and to tell us more about the physics of the hot gas in this region,” concludes EHT collaboration member Jongho Park, an East Asian Core Observatories Association Fellow at the Academia Sinica Institute of Astronomy and Astrophysics in Taipei. 

It moves!

After thorough tests, visual examinations, and programming updates, Perseverance made its first tentative moves on the surface of Mars. Tracks seen here were formed by one set of three wheels crossing the dusty surface, rolling over some stones, and cutting through drifted sands. NASA’s latest Mars rover acquired this image using its onboard Right Navigation Camera (Navcam). The camera is located high on the rover’s mast and aids in driving. This image was acquired on Mar. 6, 2021 (Sol 15) at the local mean solar time of 16:49:29. Image Credit: NASA/JPL-Caltech

NASA HQ building named for Mary W. Jackson, of “Hidden Figures” fame

Mary Winston Jackson (1921–2005) successfully overcame the barriers of segregation and gender bias to become a professional aerospace engineer and leader in ensuring equal opportunities for future generations. Credit: NASA

NASA Administrator Jim Bridenstine announced Wednesday the agency’s headquarters building in Washington, D.C., will be named after Mary W. Jackson, the first African American female engineer at NASA.

Jackson started her NASA career in the segregated West Area Computing Unit of the agency’s Langley Research Center in Hampton, Virginia. Jackson, a mathematician and aerospace engineer, went on to lead programs influencing the hiring and promotion of women in NASA’s science, technology, engineering, and mathematics careers. In 2019, she was posthumously awarded the Congressional Gold Medal.

“Mary W. Jackson was part of a group of very important women who helped NASA succeed in getting American astronauts into space. Mary never accepted the status quo, she helped break barriers and open opportunities for African Americans and women in the field of engineering and technology,” said Bridenstine. “Today, we proudly announce the Mary W. Jackson NASA Headquarters building. It appropriately sits on ‘Hidden Figures Way,’ a reminder that Mary is one of many incredible and talented professionals in NASA’s history who contributed to this agency’s success. Hidden no more, we will continue to recognize the contributions of women, African Americans, and people of all backgrounds who have made NASA’s successful history of exploration possible.”

The work of the West Area Computing Unit caught widespread national attention in the 2016 Margot Lee Shetterly book “Hidden Figures: The American Dream and the Untold Story of the Black Women Mathematicians Who Helped Win the Space Race.” The book was made into a popular movie that same year and Jackson’s character was played by award-winning actress Janelle Monáe.

“We are honored that NASA continues to celebrate the legacy of our mother and grandmother Mary W. Jackson,” said, Carolyn Lewis, Mary’s daughter. “She was a scientist, humanitarian, wife, mother, and trailblazer who paved the way for thousands of others to succeed, not only at NASA, but throughout this nation.”

New video lets viewers ride the rover during Mars landing

February 22, 2021 — New video from NASA’s Mars 2020 Perseverance rover chronicles major milestones during the final minutes of its entry, descent, and landing (EDL) on the Red Planet on Feb. 18 as the spacecraft plummeted, parachuted, and rocketed toward the surface of Mars. A microphone on the rover also has provided the first audio recording of sounds from Mars.

From the moment of parachute inflation, the camera system covers the entirety of the descent process, showing some of the rover’s intense ride to Mars’ Jezero Crater. The footage from high-definition cameras aboard the spacecraft starts 7 miles (11 kilometers) above the surface, showing the supersonic deployment of the most massive parachute ever sent to another world, and ends with the rover’s touchdown in the crater.

Safe landing on Mars

This high-resolution still image is part of a video taken by several cameras as NASA’s Perseverance rover touched down on Mars on Feb. 18, 2021. A camera aboard the descent stage captured this shot. A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust). Subsequent NASA missions, in cooperation with ESA (the European Space Agency), would send spacecraft to Mars to collect these cached samples from the surface and return them to Earth for in-depth analysis. The Mars 2020 mission is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance and Curiosity rovers.
Credits: NASA/JPL-Caltech

Perseverance arrives at Mars for daring landing Thursday, February 18

The aeroshell containing NASA's Perseverance rover guides itself towards the Martian surface as it descends through the atmosphere in this illustration. Hundreds of critical events must execute perfectly and exactly on time for the rover to land on Mars safely on Feb. 18, 2021. Illustration Credit: NASA/JPL-Caltech
The aeroshell containing NASA’s Perseverance rover guides itself towards the Martian surface as it descends through the atmosphere in this illustration. Hundreds of critical events must execute perfectly and exactly on time for the rover to land on Mars safely on Feb. 18, 2021. Illustration Credit: NASA/JPL-Caltech

LIVE COMMENTARY COMMENTARY STARTS AT 2:15 P.M. THURSDAY, FEB. 18 ON NASA TV

 

NASA’s Mars 2020 Perseverance mission attempting to land the agency’s fifth rover on the Red Planet. Engineers at NASA’s Jet Propulsion Laboratory in Southern California, where the mission is managed, have confirmed that the spacecraft is healthy and on target to touch down in Jezero Crater at around 3:55 p.m. EST on Feb. 18, 2021.

 

“Perseverance is NASA’s most ambitious Mars rover mission yet, focused scientifically on finding out whether there was ever any life on Mars in the past,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “To answer this question, the landing team will have its hands full getting us to Jezero Crater – the most challenging Martian terrain ever targeted for a landing.”

 

Jezero is a basin where scientists believe an ancient river flowed into a lake and deposited sediments in a fan shape known as a delta. Scientists think the environment here was likely to have preserved signs of any life that gained a foothold billions of years ago – but Jezero also has steep cliffs, sand dunes, and boulder fields. Landing on Mars is difficult – only about 50% of all previous Mars landing attempts have succeeded – and these geological features make it even more so. The Perseverance team is building on lessons from previous touchdowns and employing new technologies that enable the spacecraft to target its landing site more accurately and avoid hazards autonomously.

 

“The Perseverance team is putting the final touches on the complex choreography required to land in Jezero Crater,” said Jennifer Trosper, deputy project manager for the mission at JPL. “No Mars landing is guaranteed, but we have been preparing a decade to put this rover’s wheels down on the surface of Mars and get to work.” You will get to watch the drama of Perseverance’s entry, descent, and landing (EDL) – the riskiest portion of the rover’s mission that some engineers call the “seven minutes of terror” – live on NASA TV. Commentary starts at 2:15 p.m. EST on Feb. 18. Engineers expect to receive notice of key milestones for landing at the estimated times below. (Because of the distance the signals have to travel from Mars to Earth, these events actually take place on Mars 11 minutes, 22 seconds earlier than what is noted here.)

 
  • Cruise stage separation: The part of the spacecraft that has been flying Perseverance – with NASA’s Ingenuity Mars Helicopter attached to its belly – through space for the last six-and-a-half months will separate from the entry capsule at about 3:38 p.m. EST.
  • Atmospheric entry: The spacecraft is expected to hit the top of the Martian atmosphere traveling at about 12,100 mph (19,500 kph) at 3:48 p.m. EST.
  • Peak heating: Friction from the atmosphere will heat up the bottom of the spacecraft to temperatures as high as about 2,370 degrees Fahrenheit (about 1,300 degrees Celsius) at 3:49 p.m. EST.
  • Parachute deployment: The spacecraft will deploy its parachute at supersonic speed at around 3:52 p.m. EST. The exact deployment time is based on the new Range Trigger technology, which improves the precision of the spacecraft’s ability to hit a landing target.
  • Heat shield separation: The protective bottom of the entry capsule will detach about 20 seconds after the parachute deployment. This allows the rover to use a radar to determine how far it is from the ground and employ its Terrain-Relative Navigation technology to find a safe landing site.
  • Back shell separation: The back half of the entry capsule that is fastened to the parachute will separate from the rover and its “jetpack” (known as the descent stage) at 3:54 p.m. EST. The jetpack will use retrorockets to slow down and fly to the landing site.
  • Touchdown: The spacecraft’s descent stage, using the sky crane maneuver, will lower the rover down to the surface on nylon tethers. The rover is expected to touch down on the surface of Mars at human walking speed (about 1.7 mph, or 2.7 kph) at around 3:55 p.m. EST.

For more information about the mission, go to: https://mars.nasa.gov/mars2020.

As the world turns

As stars appear to circle around the north celestial pole, a new laser at the Gemini North telescope on Hawaii’s Maunakea undergoes rigorous testing, as seen in this image from early October 2019. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA/J. Chu/J. Pollard 

The International Gemini Observatory, a program of the National Science Foundation’s National Optical-Infrared Astronomy Research Laboratory (NOIRLab), is seen testing a new laser which is a critical component in the telescope’s adaptive optics system. Adaptive optics utilize artificial guide stars, produced by a laser, as a reference when compensating for distortions caused by turbulence in the Earth’s atmosphere. The result is ultra-sharp images that rival the view from space. Laser commissioning activities required pointing at specific parts of the sky designed to both test and calibrate the state-of-the-art laser. This image is created from a stack of images that reveal the Earth’s rotation and the colors inherent in the images. The laser is pointing in the direction of Polaris, or the North Star (Hokupa‘a in Hawaiian). The green glow near the horizon is due to airglow from oxygen high in the Earth’s atmosphere.

Rover Perseverance to land on Mars February 18

Image Credit: NASA/JPL-Caltech

This illustration shows the events that occur in the final minutes of the nearly seven-month journey that NASA’s Perseverance rover takes to Mars. Hundreds of critical events must execute perfectly and exactly on time for the rover to land on Mars safely on Feb. 18, 2021.

Entry, Descent, and Landing, or “EDL,” begins when the spacecraft reaches the top of the Martian atmosphere, traveling nearly 12,500 mph (20,000 kph). It ends about seven minutes later, with Perseverance stationary on the Martian surface. Perseverance handles everything on its own during this process. It takes more than 11 minutes to get a radio signal back from Mars, so by the time the mission team hears that the spacecraft has entered the atmosphere, in reality, the rover is already on the ground.

NASA’s Jet Propulsion Laboratory in Southern California built and will manage operations of the Mars 2020 Perseverance rover for NASA.

For more information about the mission, go to: https://mars.nasa.gov/mars2020.

The Great Conjunction of 2020

On December 21, 2020 Jupiter and Saturn will appear closer in our sky than they have since the year 1623 — only .10º apart. By way of comparison, Earth’s Moon covers about .50º on average! In fact, the two planets will have so little visual separation that they may appear as one bright “star” in our evening sky. As with many objects we see in our night sky, planets Jupiter and Saturn will only appear to be near to each other; they will will be physically separated by about 456 million miles.

The position of the planets as they will be at 7:00 PM EST, December 21, 2020. The bright green line represents the sight line from Earth to Jupiter and Saturn. Image Credit: SkySafari / James Guilford

Here’s why the planets will appear so close in our sky:

Viewed from Earth and looking out toward Jupiter and Saturn we see the planets as if they were in the same orbit — like watching runners in their separate lanes as one overtakes the other. Viewed from “above” we can see that the planets remain well apart.

Viewed closer to the orbital plane of the planets we see how Jupiter and Saturn appear closer together against the background of space. The green line represents the sight line from Earth to the planets. Image Credit: SkySafari / James Guilford

As we drop lower and closer to the orbital plane it becomes more difficult to separate Jupiter and Saturn until, on December 21, 2020, we won’t be able to see them as discrete objects without the use of a telescope!

Jupiter and Saturn appear to merge, on December 21, 2020 as viewed from Earth and depicted here just above the orbital plane of the planets. Image Credit: SkySafari / James Guilford

While the previous extremely close conjunction took place in 1623, Jupiter and Saturn were too close to the Sun to be observed. The last time they could actually be seen so close together was even longer ago: on March 4, 1226. Great Conjunctions take place just short of 20 years apart and most are not so close as this year’s — the next will take place on October 31, 2040, when Jupiter and Saturn will be separated by 1.1º which will be close, but not so amazing as 2020.

Jupiter and Saturn may be seen in the same narrow field of view during 2020’s Great Conjunction. This simulation depicts the position of Jupiter’s Galilean Moons and Saturn’s giant satellite, Titan. Image Credit: SkySafari

If you plan to take a look, you’ll need clear skies (of course!) and you’ll need to be timely — the planetary pair will become visible low in the southwestern sky with the fading twilight and will set in the west by 7:20 PM, December 21. To see the individual planets during their close encounter will require a telescope — a small one will do — or a decent telephoto lens on a camera mounted on a tripod. Given good optics and clear skies, viewers will be able to make out the Galilean Moons of Jupiter and, perhaps spy Titan, Saturn’s brightest moon.

Before and after the 21st, Jupiter and Saturn will appear close together as they first approach, and then recede from the conjunction, continuing to move along their orbital paths. The historic astronomical event will be one night and one night only in our lifetimes. Clear skies, please!