Archives For NASA

2007 Total Lunar Eclipse. Photo by James Guilford.

2007 Total Lunar Eclipse – Photo by James Guilford

A total lunar eclipse will take place in the pre-dawn hours of January 31 but interested viewers in Northeastern Ohio are not well-favored! Weather conditions predicted for Wednesday morning are poor (mostly cloudy, at best) and the timing of the eclipse event itself works against us; at best we would see only a portion of the partial phase before our Moon sets!

Our best bet for watching this total lunar eclipse will be to view it on television or via streaming video. NASA Television and the agency’s website will provide live coverage of the celestial spectacle beginning at 5:30 a.m. EST. Weather permitting, the broadcast will feature views from the varying vantage points of telescopes at NASA’s Armstrong Flight Research Center in Edwards, California; Griffith Observatory in Los Angeles; and the University of Arizona’s Mt. Lemmon SkyCenter Observatory. You can access the live NASA broadcast via some cable television services, or online through NASA’s Moon webpages.

If skies do clear enough to see the Moon from our area, here’s a timetable for significant points in the upcoming eclipse as viewed from the city of Oberlin — the timing would be off only by a few seconds viewed from other areas of Northeastern Ohio.

Table giving Timing of January 31, 2018 Total Lunar Eclipse - Credit: TimeAndDate.com

Table giving Timing of January 31, 2018 Total Lunar Eclipse – Credit: TimeAndDate.com

This eclipse event is getting special attention because it offers the rare coincidence of three lunar events: A “supermoon,” a “blue moon” and a total lunar eclipse at the same time. A “supermoon” occurs when the Moon is closest to Earth in its orbit (at or near perigee) and appears about 14 percent brighter than usual. As the second Full Moon of the month, this Moon is also commonly called a Blue Moon, though it will not be blue in appearance. The “Super Blue Moon” will pass through Earth’s shadow and take on a reddish copper to deep-red tint. The eerie colors of totality seen during lunar eclipses frightened the ancients but delight us!

The last total lunar eclipse occurred Sept. 27-28, 2015. The next total lunar eclipse visible across North America will occur January 21, 2019.

The January 31 eclipse is the third in a series of supermoons in December 2017 and January 2018. Watch the Supermoon Trilogy video.

UPDATE: On January 18, the American Meteor Society reported two meteorites from the January 16 were found in Michigan. Congratulations to Robert Ward and Larry Atkins on the first two reported finds. The two pieces were black, about the size of driveway gravel stones.

 

A brilliant meteor flashed across the skies of the Great Lakes Region of the U.S. Tuesday night ending with two brilliant flashes and loud booms. People reacted with delight and alarm, some calling emergency services after witnessing the event. Officials quickly identified the source as a good-sized meteor entering Earth’s atmosphere, flaring and exploding as a fireball-bolide (brilliant, exploding meteor). Here’s what we know, courtesy of William Cooke, Ph.D., NASA Meteoroid Environment Office. This statement has been edited and updated from social media posts made by Dr. Cooke. — ed.

A very bright fireball (possible superbolide, which has a brightness between that of the Full Moon and the Sun) was seen in the Michigan, Ohio, Illinois region Tuesday night, January 16, at 8:08:30 PM EST. Preliminary information indicates that this meteoroid/small asteroid entered the atmosphere above the southeastern part of Michigan, just to the northwest of Detroit. The fireball was so bright that it was seen through clouds by our meteor camera located at Oberlin College, about 120 miles away.

 

Photo: A fireball meteor (bright dot in the upper-right of this image) glowed brilliantly northwest of Detroit, Michigan, and was imaged by the NASA All-Sky Fireball Network camera at Oberlin College in Northeastern Ohio.

A fireball meteor (bright dot in the upper-right of this image) flared brilliantly northwest of Detroit, Michigan, as it shot through the atmosphere. Here the event is shown as imaged by the NASA All-Sky Fireball Network camera at Oberlin College in Northeastern Ohio. The camera system located at Hiram College recorded a flash in the clouds close to the horizon but was a bit too far away for a better look. Courtesy: NASA Meteoroid Environment Office (MEO)

 

A fireball meteor (bright dot in the upper-right of this image) flared brilliantly northwest of Detroit, Michigan, as it shot through the atmosphere. Here the event is shown as imaged by the NASA All-Sky Fireball Network camera at Oberlin College in Northeastern Ohio. The camera system located at Hiram College recorded a flash in the clouds close to the horizon but was a bit too far away for a better look. Courtesy: NASA Meteoroid Environment Office (MEO)

Courtesy: NASA Meteoroid Environment Office (MEO)

 

We have calculated that this was a very slow moving meteor – speed of about 28,000 miles per hour. This fact, combined with the brightness of the meteor (which suggests a fairly big space rock at least a yard across), shows that the object penetrated deep into the atmosphere before it broke apart (which produced the sounds heard by many observers). It is likely that there are meteorites on the ground near this region – one of our colleagues at Johnson Space Center has found a Doppler weather radar signature characteristic of meteoritic material falling to earth.

Pieces of an asteroid lying near Detroit? Let’s see what the meteorite hunters find.

Photo: This image shows Jupiter's south pole, as seen by NASA's Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). Image credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

This image shows Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). Image credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

 

This image shows Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). The oval features are cyclones, up to 600 miles (1,000 kilometers) in diameter. Multiple images taken with the JunoCam instrument on three separate orbits were combined to show all areas in daylight, enhanced color, and stereographic projection.

JunoCam’s raw images are available at www.missionjuno.swri.edu/junocam for the public to peruse and process into image products.

NASA’s Jet Propulsion Laboratory manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. Caltech in Pasadena, California, manages JPL for NASA.

More information about Juno is online at http://www.nasa.gov/juno and http://missionjuno.swri.edu

Photo: A Bright Meteor - a Fireball - Recorded over Hiram April 23, 2017. Image Credit: NASA/MEO

A Bright Meteor – a Fireball – Recorded over Hiram April 23, 2017. Image Credit: NASA/MEO

 

An exceptionally bright and long-lasting fireball meteor was recorded early Sunday morning by the NASA All-Sky Fireball Network camera situated on the campus of Hiram College. The event took place at 5:09 AM EDT, April 23, the meteor streaking from south to north as it burned up entering Earth’s atmosphere. Several other fireball meteors were also recorded during during the night but this was the brightest of the bunch. A fireball is a meteor that glows brighter than the planet Venus. NASA uses data collected from Hiram’s camera along with that from other systems in the network to learn about micrometeorites and their threat to spacecraft. Fireball Network images and data are available to astronomers and to the general public alike, and are updated daily.  Click here to visit the All-Sky Fireball Network website.

Image: Artist's impression of star system. Credit: ESO/M. Kornmesser/spaceengine.org

This artist’s impression shows the view from the surface of one of the planets in the TRAPPIST-1 system. At least seven planets orbit this ultra cool dwarf star 40 light-years from Earth and they are all roughly the same size as the Earth. They are at the right distances from their star for liquid water to exist on the surfaces of several of them. This artist’s impression is based on the known physical parameters for the planets and stars seen, and uses a vast database of objects in the Universe. Credit: ESO/M. Kornmesser/spaceengine.org

 

Astronomers have found a system of seven Earth-sized planets just 40 light-years away. Using ground and space telescopes, including ESO’s Very Large Telescope, the planets were all detected as they passed in front of their parent star, the ultracool dwarf star known as TRAPPIST-1. According to the paper appearing today in the journal Nature, three of the planets lie in the habitable zone and could harbor oceans of water on their surfaces, increasing the possibility that the star system could play host to life. This system has both the largest number of Earth-sized planets yet found and the largest number of worlds that could support liquid water on their surfaces.

Astronomers using the TRAPPIST–South telescope at ESO’s La Silla Observatory, the Very Large Telescope (VLT) at Paranal and the NASA Spitzer Space Telescope, as well as other telescopes around the world, have now confirmed the existence of at least seven small planets orbiting the cool red dwarf star TRAPPIST-1. All the planets, labelled TRAPPIST-1b, c, d, e, f, g and h in order of increasing distance from their parent star, have sizes similar to Earth.

Dips in the star’s light output caused by each of the seven planets passing in front of it — events known as transits — allowed the astronomers to infer information about their sizes, compositions and orbits. They found that at least the inner six planets are comparable in both size and temperature to the Earth.

Lead author Michaël Gillon of the STAR Institute at the University of Liège in Belgium is delighted by the findings: “This is an amazing planetary system — not only because we have found so many planets, but because they are all surprisingly similar in size to the Earth!”

With just eight percent the mass of the Sun, TRAPPIST-1 is very small in stellar terms — only marginally bigger than the planet Jupiter — and though nearby in the constellation Aquarius (The Water Carrier), it appears very dim. Astronomers expected that such dwarf stars might host many Earth-sized planets in tight orbits, making them promising targets in the hunt for extraterrestrial life, but TRAPPIST-1 is the first such system to be found.

Co-author Amaury Triaud expands: “The energy output from dwarf stars like TRAPPIST-1 is much weaker than that of our Sun. Planets would need to be in far closer orbits than we see in the Solar System if there is to be surface water. Fortunately, it seems that this kind of compact configuration is just what we see around TRAPPIST-1!”

The team determined that all the planets in the system are similar in size to Earth and Venus in the Solar System, or slightly smaller. The density measurements suggest that at least the innermost six are probably rocky in composition.

The planetary orbits are not much larger than that of Jupiter’s Galilean moon system, and much smaller than the orbit of Mercury in the Solar System. However, TRAPPIST-1’s small size and low temperature mean that the energy input to its planets is similar to that received by the inner planets in our Solar System; TRAPPIST-1c, d and f receive similar amounts of energy to Venus, Earth and Mars, respectively.

All seven planets discovered in the system could potentially have liquid water on their surfaces, though their orbital distances make some of them more likely candidates than others. Climate models suggest the innermost planets, TRAPPIST-1b, c and d, are probably too hot to support liquid water, except maybe on a small fraction of their surfaces. The orbital distance of the system’s outermost planet, TRAPPIST-1h, is unconfirmed, though it is likely to be too distant and cold to harbor liquid water — assuming no alternative heating processes are occurring. TRAPPIST-1e, f, and g, however, represent the holy grail for planet-hunting astronomers, as they orbit in the star’s habitable zone and could host oceans of surface water.

These new discoveries make the TRAPPIST-1 system a very important target for future study. The NASA/ESA Hubble Space Telescope is already being used to search for atmospheres around the planets and team member Emmanuël Jehin is excited about the future possibilities: “With the upcoming generation of telescopes, such as ESO’s European Extremely Large Telescope and the NASA/ESA/CSA James Webb Space Telescope, we will soon be able to search for water and perhaps even evidence of life on these worlds.”

Image: This illustration depicts NASA's Juno spacecraft at Jupiter, with its solar arrays and main antenna pointed toward the distant sun and Earth. Image Credit: NASA/JPL-Caltech

This illustration depicts NASA’s Juno spacecraft at Jupiter, with its solar arrays and main antenna pointed toward the distant sun and Earth. Image Credit: NASA/JPL-Caltech

 

NASA’s Juno mission, launched nearly five years ago, will soon reach its final destination: the most massive planet in our solar system, Jupiter. On the evening of July 4, at roughly 9 PM PDT (12 AM EDT, July 5), the spacecraft will complete a burn of its main engine, placing it in orbit around the king of planets.

During Juno’s orbit-insertion phase, or JOI, the spacecraft will perform a series of steps in preparation for a main engine burn that will guide it into orbit. At 9:16 PM EDT (July 4), Juno will begin to turn slowly away from the sun and toward its orbit-insertion attitude. Then 72 minutes later, it will make a faster turn into the orbit-insertion attitude.

At 10:41 PM EDT, Juno switches to its low-gain antenna. Fine-tune adjustments are then made to the spacecraft’s attitude. Twenty-two minutes before the main engine burn, at 10:56 PM, the spacecraft spins up from two to five revolutions per minute (RPM) to help stabilize it for the orbit insertion burn.

At 11:18 PM, Juno’s 35-minute main-engine burn will begin. This will slow it enough to be captured by the giant planet’s gravity. The burn will impart a mean change in velocity of 1,212 MPH (542 meters a second) on the spacecraft. It is performed in view of Earth, allowing its progress to be monitored by the mission teams at NASA’s Jet Propulsion Laboratory in Pasadena, California, and Lockheed Martin Space Systems in Denver, via signal reception by Deep Space Network (DSN) antennas in Goldstone, California, and Canberra, Australia.

After the main engine burn early July 5 (Eastern Daylight Time), Juno will be in orbit around Jupiter. The spacecraft will spin down from five to two RPM, turn back toward the sun, and ultimately transmit telemetry via its high-gain antenna. At Jupiter’s current distance of 536.9 million miles from Earth, radio signals will take about 48 minutes to reach the DSN.

Juno starts its tour of Jupiter in a 53.5-day orbit. The spacecraft saves fuel by executing a burn that places it in a capture orbit with a 53.5-day orbit instead of going directly for the 14-day orbit that will occur during the mission’s primary science collection period. The 14-day science orbit phase will begin after the final burn of the mission for Juno’s main engine on October 19.

JPL manages the Juno mission for NASA. The mission’s principal investigator is Scott Bolton of Southwest Research Institute in San Antonio. The mission is part of NASA’s New Frontiers Program, managed at the agency’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space Systems in Denver built the spacecraft.

Learn more about the June mission, and get an up-to-date schedule of events, at:

http://www.nasa.gov/juno

https://solarsystem.nasa.gov/planets/jupiter/junotoolkit

 
Mission Trailer Video: Secrets lie deep within Jupiter, shrouded in the solar system’s strongest magnetic field and most lethal radiation belts. On July 4, 2016, NASA’s Juno spacecraft will plunge into uncharted territory, entering orbit around the gas giant and passing closer than any spacecraft before. Juno will see Jupiter for what it really is, but first it must pass the trial of orbit insertion.

For much more on NASA’s Juno mission, click here!