Archives For

Jupiter and its Galilean Moons as they will appear the night of July 13, 2019. Labels for Ganymede and Io overlap. Simulation via "Gas Giants".

Jupiter and its Galilean Moons as they will appear the night of July 13, 2019. Labels for Ganymede and Io overlap. Simulation via “Gas Giants”.

 

WRAP-UP: We played peek-a-boo through clouds with Moon and Jupiter all evening. When they first became visible from behind neighboring trees, viewing of our Moon and the planet was fair to poor. As time passed and the atmosphere settled down, seeing became better and late visitors were treated to excellent views of Moon and fair to good views of Jupiter with his four Galilean Moons and even the Great Red Spot (GRS). In fact, just before we closed for the night, the GRS showed not just as a thickening in the Southern Equatorial Band but as a definite shape with red coloration! Saturday’s was not the best view we’ve had of Jupiter but in the end, it was pretty good. Thanks to the 34 visitors who came out on a muggy and buggy night to enjoy the sights!

Stephens Memorial Observatory of Hiram College will host a Public Night Saturday, July 13, from 9:30 to 11:00 PM. On the observing list are two Stephens favorites: Earth’s Moon, and planet Jupiter with its moons. Other objects of interest may also be viewed using the Observatory’s 1901 vintage telescope. Given good viewing conditions, organizers say, the telescope delivers outstanding detail of the Moon and impressive views of Jupiter including, when it’s in position as it will be July 13, the planet’s Great Red Spot feature.

Organizers hope for clear skies since recent weather conditions have made scheduled observing impossible. Cloudy skies at the scheduled starting time cancel the event in which case, the observatory will not open. No reservations are required and there is no admission fee for observatory public nights.

The Observatory is located on Wakefield Road (Rt. 82) less than a quarter of a mile west of Route 700 in Hiram. There is no parking at the Observatory. Visitors may park on permissible side streets near the Post Office, a short distance east of the observatory.

Updates on programming are available via the Observatory’s Twitter feed: @StephensObs or its website: StephensObservatory.org.

Photo: Gerald ‘Jerry’ Eugene Jackson

Gerald ‘Jerry’ Jackson

GARRETTSVILLE – Gerald ‘Jerry’ Eugene Jackson, 68, of Garrettsville died on June 9, 2019. He was curator/director of Stephens Memorial Observatory of Hiram College from 1997 to 2006.

He was born on March 23, 1951, in Pittsburgh, Pennsylvania to Hugh and Esther (Ostien) Jackson.

He is survived by his wife, Margie Jackson of over 41 years (married September 17, 1977), daughters, Kelly Wood, Heather Stieglitz, Erin Jackson, Katie Atchison, and Molly Jackson; his grandchildren, Jacob, Ryan, and Joshua Wood, and Madeline and Jonah Stieglitz; brothers, Hugh, Bill, and Dale Jackson; sister, Patricia Hrabak; many nieces and nephews and great nieces and nephews; and brothers- and sisters-in-law. Jackson was preceded in death by his parents, Hugh and Esther Jackson.

Jackson retired after 37 years of work from Environmental Growth Chambers in Chagrin Falls. He was a Staff Sergeant in the United States Air Force (1969-1973) and a Vietnam War Veteran. He was a life member of the Veterans of Foreign Wars Post 5067 and 3rd Degree member of the Knights of Columbus Council 11801 in Garrettsville. He was an active member of Saint Ambrose Catholic Church since 1982 where he has served as an usher and council member and enjoyed helping out with events.

Jackson loved astronomy, and he enjoyed teaching his daughters, grandchildren, and the community about the night sky. He was a former long-time member of the Mahoning Valley Astronomical Society having served the club in a number of positions including as president for many years. Jackson was a member of the Antique Telescope Society, and volunteered as director at the Hiram College observatory where he gave tours and maintained the facility’s 1901 vintage telescope. He left the observatory position in 2006.

Jackson together with his wife, Margie, loved to travel. They frequently visited their children and grandchildren from North Carolina to Alaska and took many cruises. Jerry was an avid Pittsburgh sports fan.

Please join Jerry’s family for a memorial visitation on Sunday, June 16, 2019, from 2-4 PM at Mallory-DeHaven-Carlson Funeral Home & Cremation Services; 8382 Center St.; Garrettsville. Mass of Christian burial to be held on Monday, June 17, 2019, at 1 PM at St. Ambrose Catholic Church; 10692 Freedom St.; Garrettsville. Burial to be held on Tuesday, June 18, 2019, at the Ohio Western Reserve National Cemetery; 10175 Rawiga Road; Seville, Ohio 44273.

Online condolences at www.carlsonfuneralhomes.com

This item adapted from a Carlson Funeral Homes obituary published in the Record-Courier, June 13, 2019.

Using the Event Horizon Telescope, scientists obtained an image of the black hole at the center of galaxy M87, outlined by emission from hot gas swirling around it under the influence of strong gravity near its event horizon. Credit: Event Horizon Telescope collaboration et al.

April 10, 2019 — Today, in coordinated press conferences across the globe, Event Horizon Telescope researchers reveal that they have succeeded in unveiling the first direct visual evidence of a supermassive black hole and its shadow. The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole.

This breakthrough was announced in a series of six papers published in a special issue of The Astrophysical Journal Letters. The image reveals the black hole at the center of Messier 87, a massive galaxy in the nearby Virgo galaxy cluster. This black hole resides 55 million light-years from Earth and has a mass 6.5-billion times that of the Sun.

“This is a huge day in astrophysics,” said NSF Director France Córdova. “We’re seeing the unseeable. Black holes have sparked imaginations for decades. They have exotic properties and are mysterious to us. Yet with more observations like this one they are yielding their secrets. This is why NSF exists. We enable scientists and engineers to illuminate the unknown, to reveal the subtle and complex majesty of our universe.”

The EHT links telescopes around the globe to form an Earth-sized virtual telescope with unprecedented sensitivity and resolution. The EHT is the result of years of international collaboration and offers scientists a new way to study the most extreme objects in the Universe predicted by Einstein’s general relativity during the centennial year of the historic experiment that first confirmed the theory.

“We have taken the first picture of a black hole,” said EHT project director Sheperd S. Doeleman of the Center for Astrophysics | Harvard & Smithsonian. “This is an extraordinary scientific feat accomplished by a team of more than 200 researchers.”

The National Science Foundation (NSF) played a pivotal role in this discovery by funding individual investigators, interdisciplinary scientific teams and radio astronomy research facilities since the inception of EHT. Over the last two decades, NSF has directly funded more than $28 million in EHT research, the largest commitment of resources for the project.

Black holes are extraordinary cosmic objects with enormous masses but extremely compact sizes. The presence of these objects affects their environment in extreme ways, warping spacetime and super-heating any surrounding material.

“If immersed in a bright region, like a disc of glowing gas, we expect a black hole to create a dark region similar to a shadow — something predicted by Einstein’s general relativity that we’ve never seen before,” explained chair of the EHT Science Council Heino Falcke of Radboud University, the Netherlands. “This shadow, caused by the gravitational bending and capture of light by the event horizon, reveals a lot about the nature of these fascinating objects and allowed us to measure the enormous mass of M87’s black hole.”

Streaming out from the center of M87 like a cosmic searchlight is one of nature’s most amazing phenomena: a black-hole-powered jet of subatomic particles traveling at nearly the speed of light. In this Hubble image, the blue jet contrasts with the yellow glow from the combined light of billions of unresolved stars and the point-like clusters of stars that make up this galaxy. Credits: NASA and the Hubble Heritage Team (STScI/AURA)

Streaming out from the center of M87 like a cosmic searchlight is one of nature’s most amazing phenomena: a black-hole-powered jet of subatomic particles traveling at nearly the speed of light. In this Hubble image, the blue jet contrasts with the yellow glow from the combined light of billions of unresolved stars and the point-like clusters of stars that make up this galaxy. Credits: NASA and the Hubble Heritage Team (STScI/AURA)

Multiple calibration and imaging methods have revealed a ring-like structure with a dark central region — the black hole’s shadow — that persisted over multiple independent EHT observations.
“Once we were sure we had imaged the shadow, we could compare our observations to extensive computer models that include the physics of warped space, superheated matter and strong magnetic fields. Many of the features of the observed image match our theoretical understanding surprisingly well,” remarks Paul T.P. Ho, EHT Board member and Director of the East Asian Observatory. “This makes us confident about the interpretation of our observations, including our estimation of the black hole’s mass.”

Creating the EHT was a formidable challenge that required upgrading and connecting a worldwide network of eight preexisting telescopes deployed at a variety of challenging high-altitude sites. These locations included volcanoes in Hawaii and Mexico, mountains in Arizona and the Spanish Sierra Nevada, the Chilean Atacama Desert, and Antarctica.

The EHT observations use a technique called very-long-baseline interferometry (VLBI). which synchronizes telescope facilities around the world and exploits the rotation of our planet to form one huge, Earth-size telescope observing at a wavelength of 1.3mm. VLBI allows the EHT to achieve an angular resolution of 20 micro-arcseconds — enough to read a newspaper in New York from a sidewalk café in Paris.

The telescopes contributing to this result were ALMA, APEX, the IRAM 30-meter telescope, the James Clerk Maxwell Telescope, the Large Millimeter Telescope Alfonso Serrano, the Submillimeter Array, the Submillimeter Telescope, and the South Pole Telescope. Petabytes of raw data from the telescopes were combined by highly specialized supercomputers hosted by the Max Planck Institute for Radio Astronomy and MIT Haystack Observatory.

The construction of the EHT and the observations announced today represent the culmination of decades of observational, technical, and theoretical work. This example of global teamwork required close collaboration by researchers from around the world. Thirteen partner institutions worked together to create the EHT, using both pre-existing infrastructure and support from a variety of agencies. Key funding was provided by the US National Science Foundation, the EU’s European Research Council (ERC), and funding agencies in East Asia.

“We have achieved something presumed to be impossible just a generation ago,” concluded Doeleman. “Breakthroughs in technology, connections between the world’s best radio observatories, and innovative algorithms all came together to open an entirely new window on black holes and the event horizon.”

An end to “Oppy”

StephensAstro —  February 13, 2019 — Leave a comment

In this navigation camera raw image, NASA's Opportunity Rover looks back over its own tracks on Aug. 4, 2010. Image Credit: NASA/JPL-Caltech

In this navigation camera raw image, NASA’s Opportunity Rover looks back over its own tracks in Martian soil on Aug. 4, 2010. Image Credit: NASA/JPL-Caltech


 

February 12, 2019 — One of the most successful and enduring feats of interplanetary exploration, NASA’s Opportunity rover mission is at an end after almost 15 years exploring the surface of Mars and helping lay the groundwork for NASA’s return to the Red Planet.

The Opportunity rover stopped communicating with Earth when a severe Mars-wide dust storm blanketed its location in June 2018. After more than a thousand commands to restore contact, engineers in the Space Flight Operations Facility at NASA’s Jet Propulsion Laboratory (JPL) made their last attempt to revive Opportunity Tuesday, to no avail. The solar-powered rover’s final communication was received June 10.

Artist's concept of the Spirit & Opportunity Mars Rovers. Image Credit: NASA

Artist’s concept of the Spirit & Opportunity Mars Rovers. Image Credit: NASA

“It is because of trailblazing missions such as Opportunity that there will come a day when our brave astronauts walk on the surface of Mars,” said NASA Administrator Jim Bridenstine. “And when that day arrives, some portion of that first footprint will be owned by the men and women of Opportunity, and a little rover that defied the odds and did so much in the name of exploration.”

Designed to last just 90 Martian days and travel 1,100 yards (1,000 meters), Opportunity vastly surpassed all expectations in its endurance, scientific value and longevity. In addition to exceeding its life expectancy by 60 times, the rover traveled more than 28 miles (45 kilometers) by the time it reached its most appropriate final resting spot on Mars – “Perseverance Valley.”

“For more than a decade, Opportunity has been an icon in the field of planetary exploration, teaching us about Mars’ ancient past as a wet, potentially habitable planet, and revealing uncharted Martian landscapes,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “Whatever loss we feel now must be tempered with the knowledge that the legacy of Opportunity continues – both on the surface of Mars with the Curiosity rover and InSight lander – and in the clean rooms of JPL, where the upcoming Mars 2020 rover is taking shape.”

Click here for more on NASA’s Mars rovers!

Image: ESO 577-24 Credit: ESO

The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time  — around 10,000 years, a blink of an eye in astronomical terms. ESO’s Very Large Telescope captured this shell of glowing ionized gas — the last breath of the dying star whose simmering remains are visible at the heart of this image. As the gaseous shell of this planetary nebula expands and grows dimmer, it will slowly disappear from sight. An object much closer to home is also visible in this image — an asteroid wandering across the field of view has left a faint track below and to the left of the central star. And in the far distance behind the nebula a glittering host of background galaxies can be seen. Credit: ESO

An evanescent shell of glowing gas spreading into space — the planetary nebula ESO 577-24 —  dominates this image. This planetary nebula is the remains of a dead giant star that has thrown off its outer layers, leaving behind a small, intensely hot dwarf star. This diminished remnant will gradually cool and fade, living out its days as the mere ghost of a once-vast red giant star.

Red giants are stars at the end of their lives that have exhausted the hydrogen fuel in their cores and begun to contract under the crushing grip of gravity. As a red giant shrinks, the immense pressure reignites the core of the star, causing it to throw its outer layers into the void as a powerful stellar wind. The dying star’s incandescent core emits ultraviolet radiation intense enough to ionize these ejected layers and cause them to shine. The result is what we see as a planetary nebula — a final, fleeting testament to an ancient star at the end of its life.

This dazzling planetary nebula was discovered as part of the National Geographic Society  — Palomar Observatory Sky Survey in the 1950s, and was recorded in the Abell Catalogue of Planetary Nebulae in 1966. At around 1400 light years from Earth, the ghostly glow of ESO 577-24 is only visible through a powerful telescope. As the dwarf star cools, the nebula will continue to expand into space, slowly fading from view.

This image of ESO 577-24 was created as part of the ESO Cosmic Gems Programme, an initiative that produces images of interesting, intriguing, or visually attractive objects using ESO telescopes for the purposes of education and public outreach. The program makes use of telescope time that cannot be used for scientific observations; nevertheless, the data collected are made available to astronomers through the ESO Science Archive.

Photo: "Solstice Skies over Stephens" Photo by David Dreimiller.

“Solstice Skies over Stephens” Photo by David Dreimiller. While it’s not currently solstice, the low sun and cloudy skies certainly go with the season!

Stephens Memorial Observatory is closed for the season. If we enjoy a stretch of clear nights this winter, we may open for a special Open Night event (we would love to show you the Orion Nebula) so watch this website and our Twitter feed for updates. Otherwise, we’ll hope to reopen in March for monthly sessions and for better luck with the nighttime weather in 2019!

2007 Total Lunar Eclipse. Photo by James Guilford.

2007 Total Lunar Eclipse

Exciting News: A total lunar eclipse will take place January 20 – 21 and our area will be able to view the entire event, IF we are fortunate enough to have clear skies!

On the night of January 20, 2019 Earth’s shadow will cross the face of its Moon and viewers across North America will be treated to a total lunar eclipse. We, in Northeastern Ohio, are in luck this time as the entire eclipse will be visible to us given clear enough skies, of course.

As the penumbral phase of the eclipse begins, at 9:36 PM, viewers will see the Full Moon gradually dimming, entering the lighter outer portion of Earth’s shadow. At 10:33 the partial eclipse begins and the disk of the Moon will show a dark, curved area expanding across its area. As the Moon moves deeper into shadow it will continue to darken until begin to glow a copper-red until at totality,11:41 PM, Luna will hang colorfully in our star-sprinkled sky as totality begins — the time the Moon is fully within the darkest portion of Earth’s shadow, known as the umbra. Maximum eclipse takes place at 12:12 AM (Jan. 21) and totality ends at 12:43 AM. As the eclipse ends, the process reverses until in the wee hours of Monday, the Full Moon will brightly shine again. Click here for more information from TimeAndDate.com.

Image: January 2019 Total Lunar Eclipse Timing - Credit: TimeAndDate.com

January 2019 Total Lunar Eclipse Timing – Credit: TimeAndDate.com

Please note: Because Stephens Memorial Observatory is located in a residential area and the peak portion of the eclipse will take place late at night, the observatory WILL NOT be open. Our big telescope is not necessary for your enjoyment of this wondrous natural phenomenon however, just go outside and look up! Binoculars or a small telescope may give a more detailed view but are not necessary. A lunar eclipse is completely safe to watch — it’s moonlight — so you need no special glasses or vision protection.