Archives For January 2019

Image: ESO 577-24 Credit: ESO

The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time  — around 10,000 years, a blink of an eye in astronomical terms. ESO’s Very Large Telescope captured this shell of glowing ionized gas — the last breath of the dying star whose simmering remains are visible at the heart of this image. As the gaseous shell of this planetary nebula expands and grows dimmer, it will slowly disappear from sight. An object much closer to home is also visible in this image — an asteroid wandering across the field of view has left a faint track below and to the left of the central star. And in the far distance behind the nebula a glittering host of background galaxies can be seen. Credit: ESO

An evanescent shell of glowing gas spreading into space — the planetary nebula ESO 577-24 —  dominates this image. This planetary nebula is the remains of a dead giant star that has thrown off its outer layers, leaving behind a small, intensely hot dwarf star. This diminished remnant will gradually cool and fade, living out its days as the mere ghost of a once-vast red giant star.

Red giants are stars at the end of their lives that have exhausted the hydrogen fuel in their cores and begun to contract under the crushing grip of gravity. As a red giant shrinks, the immense pressure reignites the core of the star, causing it to throw its outer layers into the void as a powerful stellar wind. The dying star’s incandescent core emits ultraviolet radiation intense enough to ionize these ejected layers and cause them to shine. The result is what we see as a planetary nebula — a final, fleeting testament to an ancient star at the end of its life.

This dazzling planetary nebula was discovered as part of the National Geographic Society  — Palomar Observatory Sky Survey in the 1950s, and was recorded in the Abell Catalogue of Planetary Nebulae in 1966. At around 1400 light years from Earth, the ghostly glow of ESO 577-24 is only visible through a powerful telescope. As the dwarf star cools, the nebula will continue to expand into space, slowly fading from view.

This image of ESO 577-24 was created as part of the ESO Cosmic Gems Programme, an initiative that produces images of interesting, intriguing, or visually attractive objects using ESO telescopes for the purposes of education and public outreach. The program makes use of telescope time that cannot be used for scientific observations; nevertheless, the data collected are made available to astronomers through the ESO Science Archive.

Photo: "Solstice Skies over Stephens" Photo by David Dreimiller.

“Solstice Skies over Stephens” Photo by David Dreimiller. While it’s not currently solstice, the low sun and cloudy skies certainly go with the season!

Stephens Memorial Observatory is closed for the season. If we enjoy a stretch of clear nights this winter, we may open for a special Open Night event (we would love to show you the Orion Nebula) so watch this website and our Twitter feed for updates. Otherwise, we’ll hope to reopen in March for monthly sessions and for better luck with the nighttime weather in 2019!

2007 Total Lunar Eclipse. Photo by James Guilford.

2007 Total Lunar Eclipse

Exciting News: A total lunar eclipse will take place January 20 – 21 and our area will be able to view the entire event, IF we are fortunate enough to have clear skies!

On the night of January 20, 2019 Earth’s shadow will cross the face of its Moon and viewers across North America will be treated to a total lunar eclipse. We, in Northeastern Ohio, are in luck this time as the entire eclipse will be visible to us given clear enough skies, of course.

As the penumbral phase of the eclipse begins, at 9:36 PM, viewers will see the Full Moon gradually dimming, entering the lighter outer portion of Earth’s shadow. At 10:33 the partial eclipse begins and the disk of the Moon will show a dark, curved area expanding across its area. As the Moon moves deeper into shadow it will continue to darken until begin to glow a copper-red until at totality,11:41 PM, Luna will hang colorfully in our star-sprinkled sky as totality begins — the time the Moon is fully within the darkest portion of Earth’s shadow, known as the umbra. Maximum eclipse takes place at 12:12 AM (Jan. 21) and totality ends at 12:43 AM. As the eclipse ends, the process reverses until in the wee hours of Monday, the Full Moon will brightly shine again. Click here for more information from TimeAndDate.com.

Image: January 2019 Total Lunar Eclipse Timing - Credit: TimeAndDate.com

January 2019 Total Lunar Eclipse Timing – Credit: TimeAndDate.com

Please note: Because Stephens Memorial Observatory is located in a residential area and the peak portion of the eclipse will take place late at night, the observatory WILL NOT be open. Our big telescope is not necessary for your enjoyment of this wondrous natural phenomenon however, just go outside and look up! Binoculars or a small telescope may give a more detailed view but are not necessary. A lunar eclipse is completely safe to watch — it’s moonlight — so you need no special glasses or vision protection.

This image taken by the Long-Range Reconnaissance Imager (LORRI) is the most detailed of Ultima Thule returned so far by the New Horizons spacecraft. It was taken at 5:01 Universal Time on January 1, 2019, just 30 minutes before closest approach from a range of 18,000 miles (28,000 kilometers), with an original scale of 730 feet (140 meters) per pixel. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

This image taken by the Long-Range Reconnaissance Imager (LORRI) is the most detailed of Ultima Thule returned so far by the New Horizons spacecraft. It was taken at 5:01 Universal Time on January 1, 2019, just 30 minutes before closest approach from a range of 18,000 miles (28,000 kilometers), with an original scale of 730 feet (140 meters) per pixel.Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

 

NASA’s New Horizons spacecraft flew past Ultima Thule in the early hours of New Year’s Day, ushering in the era of exploration from the enigmatic Kuiper Belt, a region of primordial objects that holds keys to understanding the origins of the solar system.

Signals confirming the spacecraft is healthy and had filled its digital recorders with science data on Ultima Thule reached the mission operations center at the Johns Hopkins Applied Physics Laboratory (APL) today at 10:29 a.m. EST, almost exactly 10 hours after New Horizons’ closest approach to the object.

Artist's depiction of New Horizons in the Kuiper Belt region of our Solar System. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Artist’s depiction of New Horizons in the Kuiper Belt region of our Solar System. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

“New Horizons performed as planned today, conducting the farthest exploration of any world in history — 4 billion miles from the Sun,” said Principal Investigator Alan Stern, of the Southwest Research Institute in Boulder, Colorado. “The data we have look fantastic and we’re already learning about Ultima from up close. From here out the data will just get better and better!”

Images taken during the spacecraft’s approach — which brought New Horizons to within just 2,200 miles (3,500 kilometers) of Ultima at 12:33 a.m. EST — revealed that the Kuiper Belt object may have a shape similar to a bowling pin, spinning end over end, with dimensions of approximately 20 by 10 miles (32 by 16 kilometers). Another possibility is Ultima could be two objects orbiting each other. Flyby data have already solved one of Ultima’s mysteries, showing that the Kuiper Belt object is spinning like a propeller with the axis pointing approximately toward New Horizons. This explains why, in earlier images taken before Ultima was resolved, its brightness didn’t appear to vary as it rotated. The team has still not determined the rotation period.

As the science data began its initial return to Earth, mission team members and leadership reveled in the excitement of the first exploration of this distant region of space.

“New Horizons holds a dear place in our hearts as an intrepid and persistent little explorer, as well as a great photographer,” said Johns Hopkins Applied Physics Laboratory Director Ralph Semmel. “This flyby marks a first for all of us — APL, NASA, the nation and the world — and it is a great credit to the bold team of scientists and engineers who brought us to this point.”

“Reaching Ultima Thule from 4 billion miles away is an incredible achievement. This is exploration at its finest,” said Adam L. Hamilton, president and CEO of the Southwest Research Institute in San Antonio. “Kudos to the science team and mission partners for starting the textbooks on Pluto and the Kuiper Belt. We’re looking forward to seeing the next chapter.”

The New Horizons spacecraft will continue downloading images and other data in the days and months ahead, completing the return of all science data over the next 20 months. When New Horizons launched in January 2006, George W. Bush was in the White House, Twitter had just been launched and Time Magazine’s Person of the Year was “you — all the worldwide web users.” Nine years into its journey, the spacecraft began its exploration of the Kuiper Belt with a flyby of Pluto and its moons. Almost 13 years after the launch, the spacecraft will continue its exploration of the Kuiper Belt until at least 2021. Team members plan to propose more Kuiper Belt exploration.

For more information about the amazing New Horizons mission, visit: http://pluto.jhuapl.edu/